Some Companions of Grüss Inequality in Inner Product Spaces

نویسنده

  • S. S. DRAGOMIR
چکیده

∥ ≤ 1 2 |Γ− γ| holds, then we have the inequality (1.3) |〈x, y〉 − 〈x, e〉 〈e, y〉| ≤ 1 4 |Φ− φ| |Γ− γ| . The constant 1 4 is best possible in the sense that it cannot be replaced by a smaller constant. The following particular instances for integrals and means are useful in applications. Corollary 1. Let f, g : [a, b] → K (K = C,R) be Lebesgue measurable and such that there exists the constants φ, γ,Φ,Γ ∈ K with the property (1.4) Re [

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Companions of the Grüss Inequality in Inner Product Spaces

Some companions of Grüss inequality in inner product spaces and applications for integrals are given.

متن کامل

Grüss Type Discrete Inequalities in Inner Product Spaces, Revisited

Some sharp inequalities of Grüss type for sequences of vectors in real or complex inner product spaces are obtained. Applications for Jensen's inequality for convex functions defined on such spaces are also provided.

متن کامل

A Counterpart of Bessel’s Inequality in Inner Product Spaces and Some Grüss Type Related Results

A counterpart of the famous Bessel's inequality for orthornormal families in real or complex inner product spaces is given. Applications for some Grüss type inequalities are also provided.

متن کامل

Grüss Type Inequalities for Forward Difference of Vectors in Inner Product Spaces

Some Grüss type inequalities for two sequences of vectors in terms of the forward difference are given. An application for the Jensen inequality for convex functions defined on inner product spaces is also pointed out. 2000 Mathematics Subject Classification: 26D15, 47A05, 46A05.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008